
ANL-6660 ANL-6660 

argonne Bational laboratorg 
THE AXISYMMETRIC FREE-CONVECTION 

HEAT TRANSFER ALONG A VERTICAL 

THIN CYLINDER WITH CONSTANT 

SURFACE TEMPERATURE 

by 

R. Viskanta 
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ABSTRACT 

The subject of this study is the problem of laminar 
free-convection flow produced by a heated, vert ical , c i rcu­
la r cylinder for which the temperature at the outer surface 
of the cylinder is assumed to be uniform. The solution of 
the boundary-layer equations was obtained by two methods: 
(l) the perturbation method of Sparrow and Gregg, which 
is valid only for small values of the axial distance pa ram­
eter 5 ; and (2) the integral method of Hama et al., for large 
values of the pa ramete r ^. Heat- t ransfer resul ts were cal ­
culated for Prandtl numbers (Pr) of 100, 10, 2, 1, 0.72, 0.1, 
0.03, 0.02, and 0.01. It was found that the Nusselt numbers 
(Nu) for the cylinder were higher than those for the flat 
plate, and this difference increased as P r decreased. It 
was also found that the perturbation method of solution of 
the free-convection boundary-layer equations becomes use­
less for small values of Pr because of the slow convergence 
of the s e r i e s . The resul ts obtained by the integral method 
were in good agreement with those calculated by the per tu r ­
bation method for Pr = 1 and 0.1 < ? < 1 only; they deviated 
considerably for smal ler values of | . 

I. INTRODUCTION 

The gravitational free convection from a number of typical geome­
t r i e s , such as the ver t ical flat plate, the horizontal tube, and the vert ical 
c i rcular cylinder, are important in industrial applications. Even though 
laminar free convection on a ver t ical plate has been a subject of study 
since 1881, there has been little study of laminar free-convection heat 
t ransfer from a ver t ical thin cylinder. Recently, the knowledge of heat 
t ransfer from a fuel pin (a c i rcular cylinder) under free-convection condi­
tions has become of par t icular importance in considerations of reactor 
safety. When the boundary-layer thickness is small compared with the 
radius of the cylinder, the effect of t r ansverse curvature on the flow and 
heat t ransfer is negligible, and the velocity and tempera ture distributions 





can be well approximated by the solution of the problem of the vert ical flat 
plate. As the distance from the leading nose increases , the thickness of 
the boundary layer also increases , so that the effect of t ransverse curva­
ture becomes no longer negligible, and the resul ts for a vert ical cylinder 
depart more and more from those of a flat plate. 

The theoretical investigations of the axisymmetr ic free convection 
are pr imar i ly limited to the study of Sparrow and Gregg,(l) who solved 
the boundary-layer equations and obtained numerical resul ts for Prandtl 
numbers of 0.72 and I, as applicable for gases; and the more recent ana­
lytical and experimental study of Hama _et̂ _al. ,(2) for Prandtl number 0.72, 
as applicable for air . References (l) and (2) also list other related work 
on free-convection problems. The solution of Sparrow and Gregg provides 
a very good approximation of the boundary-layer equations near the nose 
of the cylinder where the boundary-layer thickness is small compared with 
the radius of the cylinder. The solution is not expected to be applicable in 
the region far from the nose where the thickness of the boundary layer is 
comparable with or much la rger than the radius of the cylinder. This is 
the case as shown analytically and verified experimentally by Hama et al. 

This repor t presents a study of laminar free-convection heat t r a n s ­
fer from a ver t ical thin cylinder at a constant surface tempera ture . The 
analyses of References (l) and (2) are extended to fluids with high and low 
Prandtl numbers . In the lat ter case , i .e. , for liquid meta l s , the inert ia 
t e rms in the momentum equation are not negligible in comparison with 
the viscous t e r m s , and therefore the inertia t e rms have been retained in 
the momentum integral equation. 

II. ANALYSIS 

General Considerations and Mathematical Formulation 

The physical model and coordinate system are indicated in Fig. 1. 
Two physical situations that come within the scope of the analysis are 
shown. In Fig. l(a) the wall tempera ture T^ exceeds the ambient t emper ­
ature Ta. For this case, due to buoyancy forces, an upward flow of fluid 
in the boundary layer is established. In Fig. l(b) the wall temperature is 
cooler than the ambient tempera ture , and the flow of the fluid in the boundary 
layer is downward. 

If the coordinate sys tems are taken as shown in Fig. 1, there is no 
distinction between the two problems and the method of analysis and the 
resul ts for heat t ransfer a re the same; thus, there is no need to t reat the 
problems separately. 
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Fig. 1. Physical Model and Coordinate System 

The basic conservation equations of mass , momentum, and energy 
for axisymmetric laminar free convection along a vertical cylinder, under 
the assumptions of boundary-layer approximations and constant physical 
proper t ies , are given by 

h (^-)' ^ (^^)=° (1) 

+ V 
Su 
Sr 

d u 
( T - T a ) (2) 

ST 
ax + V 

ST 
S7 

ST 
Sr (3) 

Viscous dissipation and work against the gravity field have been neglected. 
In accord with the usual practice in free convection, the density has been 
considered a variable only in formulating the buoyancy term [ i g | 3 ( T - Ta)]. 
The plus sign is associated with Fig. l(a), whereas the minus sign is used 
with Fig. 1(b). 

The boundary conditions to be satisfied are given by 

u = v 

u = 0 

Tw at r 
(4) 





Solution of the Problem for Small Values of the x -Pa rame te r (g) 

In the case of free convection from a ver t ical cylinder, there is only 
one "s imilar i ty" solution in the l i terature,(3.4) and that solution is for the 
temperature and velocity distributions satisfying pertinent boundary condi­
tions for a l inear variation of the surface temperature along the cylinder. 
The only solution of the axisymmetr ic laminar free convection along a 
vert ical thin cylinder, with constant surface tempera ture , obtained so far 
is that by Sparrow and Gregg.(l) Their solution employed a perturbation 
method f irst applied by Seban and Bond(5) and by Kelly(6) for forced con­
vection along a horizontal cylinder. Here the continuity equation, Eq. ( l ) , 
is satisfied by introducing the s t ream function defined by 

, = 1 4 * ; V = - - i # . (5) 
r or r ox 

The part ia l differential equations (2) and (3) are transformed from 
the (x,y) coordinate system to the {^,r}) system by the use of the follow­
ing substitutions: 

23/2^7/4^1/4 • 

, 3 /2 / ^ \ l / 4 73/2 

G r ' ' * \ r o / Gr^' 

Gr^/%ry^xi/*f(4,Tl) 
^vT 

(6) 

(7) 

(8) 

i-

and 

e -_ lll±. . (9) 

Tw " Ta 

Then, by assuming that f and Q can be expanded in power se r ies of 

f(4,T)) = e^[fo(ri)+ ?fi(T))+ ih^y)^ ••• +] (10) 

e(4,T)) = eo(T)) + ?ei(Ti)+ ? 'e2(r i )+••• + , ( n ) 

the part ia l differential equations in the coordinate system (? ,'0) reduced to 
the following systems of ordinary differential equations: 

3 P r foQi = 0 
, . (12) 

fo' + 3 fofi' - Z{io? + So = 0 





10 

>; + Bo +veo - P r d o S i - 4 i^Oo - 3 foQi) = 0 
: . (13) 

fi" + fo + rifo" - 5 fi t ; + 4 f^'fi + 3 f;fo + Si = 0 . 

ej' + e; + Tl©;' - Pr(f;ei + 2 foSz - 5 fjSi - 4 fis; - 3 fosj) = 0 

iz + fi' + -y'l' - 6 f,;f2 - 3(f;)2 + 5 i^h + 4 f;'fi +3f2'fo + e^ = 0 
(14) 

in which the p r i m e s deno te d i f f e r e n t i a t i o n with r e s p e c t to T). 

The b o u n d a r y c o n d i t i o n s , Eq . (4), b e c o m e in the c o o r d i n a t e s y s t e m 
of (4.T)) 

f0 = f0 = 0 , So = 1 a t T) = 0 

fo = ei = 0 at Tl ^ •» 

fl =f; = 01 = 0 a t T)= 0 

fi = Si = 0 at T) — oo 

f2=f2 = 02 = 0 at 71 = 0 

f j = 02 = 0 a t T) -» CO 

Additional mathematical details can be found in Reference (l) . 

(12a) 

13a 

(14a) 

The zero th-order approximation, Eq. (12), and the corresponding 
boundary conditions given in Eq. (l2a) are identical with the differential 
equations for free convection along a vert ical flat plate. Numerical solu­
tions of these equations covering a large range of Prandtl numbers have 
been tabulated in detail.(7.8) The solution of Eqs. (13) and (l4), subject to 
the boundary conditions, Eqs. (l3a) and (l4a), respectively, is discussed in 
Appendix A. 

Solution of the Problem for Large Values of the x - P a r a m e t e r (g) 

Since the x -pa ramete r (§) is essentially a ratio of the thickness of 
the thermal boundary layer to the radius of the cylinder, it is expected 
from the nature of the expansion of f(4,'n) and e(|,T)) in power se r i es of 
5 that the Sparrow and Gregg solution should provide a good approximation 
near the leading edge, where the thickness of the thermal boundary layer 
is small in comparison with the radius of the cylinder. The radius of 
convergence of the se r ies given by Eqs. ( lO)and( l l ) is not known; however. 
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it is not expected to be greater than one (4 < l ) . Therefore, the r e su l t s ' l ) 
will not be applicable in the region far from the stagnation point, where 
^ > 1 and the boundary-layer thickness is much larger than the radius of 
the cylinder. For this reason, the Karman-Pohlhausen integral method, 
as extended by Glauert and Lighthill,(9) Mark,(lO) and Hama et al. ,(2) 
will be used to obtain an approximate solution for large values of the 
x -paramete r ( | ) . 

It is a s sumed( l l ) that the common boundary-layer thickness (6) 
can be used for both the monaentum and thermal boundary layers . This 
assumption has its justification in that the resul ts of calculations based 
on the assumption agree with those from exact solutions of the boundary-
layer differential equations. Other authors,(12.13) in their studies of 
free-convection problems, have assumed that the thickness of the thermal 
boundary layer, 6t, is different from the thickness of the momentum 
boundary layer, 6, and these change with the Prandtl number. However, 
Merk(l4) points out that 61/6 = 1 for Pr £ 1 and that bt/i < I for P r > 1. 
He further states that "it is not reasonable to assume that 6^ > 6 , since 
this would mean that there are regions in which the temperature field 
differs from that of the surrounding fluid, and that in these regions buoy­
ant force is present (in free convection, the velocity is caused by buoyant 
forces). Hence, from the physical point of view, it is clear that the upper 
bound di/b is given by (the number) 1." The exact (numerical) solutions 
of boundary-layer equations for free convection along a vert ical flat plate, 
with low Prandtl number coolants, substantiate this conclusion.(° ' 

The integration of the basic equations (2) and (3) from the wall to 
the edge of the boundary layer with respect to r, after multiplying by r, 
and utilizing the boundary conditions given by Eq. (4), and the continuity 
equation ( l ) , yields the integral equations 

d 
dx 

r ro+6 
u^r dr = ± g/3(Tv,-Ta) / Sr dr - v r o ( ^ ) (15) 

and 

f J ' . e r d r = - a r „ | f , (16) 
Jro ^ ' To 

where Q is the dimensionless tempera ture . If a new independent variable , 
y = r - r o , is introduced, Eqs. (15) and (l6) become 

r-b 
^ ^ u^(ro + y )dy = ± g P ( T w - T a ) / e(ro +y) dy - r o i ^ ( ^ ) (17) 
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and 

^ / ue(ro + y) dy = - aro (-^j . (18) 

In applying the Karman-Pohlhausen method of solution to axisym­
metric problems, Glauert and Lighthill(9) and Hama et al. ,(2) emphasize 
the importance of a proper profile whose behavior near the solid surface 
is realistic. According to Hama et al., the velocity profile is written as 

u = K 
1̂ 0 

y±sA (19) 

The order of error in Eq. (19) is O(y/ro)^. The temperature profile is 
given by 

0 = 1 - NMin(^-^^] . (20) 

The temperature distribution near the wall is correct to the order of 
O(y/ro)*. The thickness of the thermal boundary layer is related to the 
Nusselt number (Nu) by the relation 

6/ro = exp (I/NU) - 1 . (21) 

The coefficients U and Nu, which are functions of x, are found from the 
boundary conditions of the problem and the integrated momentum and 
energy equations. 

The terms on the left-hand side of the momentum equation, Eq. (2) 
or (17), are the inertia terms. They are rather insignificant in the free-
convection problems unless the Prandtl number is extremely small, such 
as in the case of liquid metals; therefore, it is not permissible to omit the 
inertia terms in the present analysis. 

The functions representing the velocity, Eq. (19), and temperature 
distributions, Eq. (20), are introduced into Eqs. (17) and (18), and after 
integrations and differentiations are carried out (see Appendix B) there 
results 

a 4 U + b ^ = d (22) 

and 

d^ d| 

^ ! f ^ B | = D (23) 
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wi th the i n i t i a l c o n d i t i o n s : 

U = a = 0 , f o r | = 0 (24) 

Since the d i f f e r en t i a l e q u a t i o n s a r e s i n g u l a r a t ^ = 0 in the n u m e r i ­
ca l so lu t i on of E q s . (22) and (23), i t w a s only p o s s i b l e to a p p r o a c h the 
o r i g i n to wi th in e , e s t i m a t e U and a a t ^ = e , and p r o c e e d with t he n u m e r ­
i c a l i n t e g r a t i o n f r o m tha t point on . The e r r o r i n t r o d u c e d by th i s p r o c e d u r e 
cou ld no t be e s t i m a t e d . The R u n g e - K u t t a m e t h o d w a s u s e d for the n u m e r i c a l 
so lu t ion of the d i f f e r e n t i a l e q u a t i o n s . 

S k i n - F r i c t i o n and H e a t - T r a n s f e r P a r a m e t e r s 

The l o c a l sk in f r i c t i on i s ob ta ined by app ly ing the Newton ian s h e a r 
f o r m u l a : 

T = 11 
hu 

25 
r =ro 

The v e l o c i t y c o m p o n e n t u in the x - d i r e c t i o n can be e x p r e s s e d in t e r m s of 
the d i m e n s i o n l e s s s t r e a m funct ion a s 

GTV 

4ro VSri 
(26) 

In t e r m s of d i m e n s i o n l e s s v a r i a b l e s , the s k i n - f r i c t i o n p a r a m e t e r can be 
e x p r e s s e d a s 

4 pGr (v/vo)^ ^ 
= i:iL°i = e[fo(o) + ef;'(o) + i^f2(o) + ...] (27) 

E q u a t i o n (27) can be r e w r i t t e n a s the r a t i o of the s h e a r s t r e s s for a c y l ­
i n d e r (cyl) to tha t for a f lat p l a t e (fp) in the f o r m 

' 'cyl 
1 +^-pr 

f;(o) 

fo(0) 

f2(0) 

^ fo'(O) ^ 

w h e r e 

^fp 

p[4Gr^Y'' {v/y /i 
fo'(O) 

The l o c a l h e a t - t r a n s f e r coef f ic ien t i s def ined a s 

q _ k / 3 T \ 
- /T.. . - T - i I S . ^ , ^ ^ ( T w - T a ) ( T w - T a ) 

(28) 

(29) 

(30) 
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In t e rms of the dimensionless var iables defined by Eqs. (6) and (9), the 
relation for h becomes 

k G l 

21/2^3/4^1/4 VST)/^ = O 
l\ 31 

The Nusselt number Nu, based on the radius of the cylinder as the 
character is t ic dimension, is defined as 

hrn 
Nu = ( T ^ - T a ) k 

(32) 

The local Nusselt number Nu^, based on the axial distance x as the char­
acter is t ic dimension, is obtained from the definition of Eq. (32) and expres­
sion of Eq. (31) with the help of Eq. ( l l ) as 

Nux = Nu^-^) = - 4 T G ^ ' " [^^(0) + ?^;(°) + ?'^^(0) + ••• (33) 

Since the f irst t e rm on the right-hand side of Eq. (33) represents 
the local Nusselt number for the flat plate, Eq. (33) can be rewrit ten as 
the ratio of a local Nusselt number for the cylinder to that for the flat 
plate: 

Nu x,cyl 
1 + ? 

^;(o) 
+ i' em 

Nux.fp " • ' ei(o) ' ^ e;(o) 

The average heat - t ransfer coefficient over a length x is defined 

34) 

h =— f h dx (35) 

If the indicated integration is performed and an average Nusselt number 
NUx, based on the distance x as the charac ter i s t ic dimension, is defined, 
there resul ts 

_ hx J 3/2 

G r 
1/4 ^ i ( o ) + | l 61(0) + I i'em + (36) 

Again, the f i rs t t e rm on the right-hand side of Eq. (36) is the average 
Nusselt number for a flat plate. 
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III. DISCUSSION OF RESULTS 

From the solution of Eqs. (12) through (14), the essential informa­
tion needed in the heat - t ransfer calculations includes 9j(0) and 92(0)-
These resul ts are listed in Table 1 with the values(''',8) of 6^(0). There 
are two aspects of these resul ts which should be mentioned: first , that 
Sj(0) var ies only slightly with the Prandtl number over the very wide 
range considered here ; and secondly, the large magnitudes of 9i(0)/ 
9 o(0) and 92(0)/9j,(0) for small Prandtl numbers. Thus, even for small 
4 values (4 = 0.1) the second and third t e rms of the ser ies begin to be 
important. In the perturbation method of Sparrow and Gregg as applied 
to liquid meta ls , the truncation of the ser ies after the third term appears 
to be in question, even for values of | < 0.3; therefore, no effort was 
made to obtain solutions for P r < 0.01. 

Table 1 

TEMPERATURE GRADIENTS AT THE SURFACE OF THE CYLINDER 

Pr 

100 
10 
2 
1 
0.72 
0.1 
0.03 
0.02 
0.01 

9;(o) 

-2.1913 
-1.1694 
-0.7165 
-0.5671 
-0.5046 
-0.2301 
-0.1346 
-0.1117 
-0.0812 

9;(0) 

-0.2236 
-0.2281 
-0.2251 
-0.2239 
-0.2230 
-0.2217 
-0.2225 
-0.2218 
-0.2259 

9̂ (0) 

0.0206 
0.0262 
0.0298 
0.0810 
0.1525 
0.1811 
0.2051 

e;(o)/ei(o) 

0.1020 
0.1347 
0.3141 
0.4034 
0.4421 
0.6935 
1.6523 
1.9866 
2.7820 

e2(0)/9i(0) 

-0.0288 
-0.0462 
-0.0591 
-0.3521 
-1.1324 
-1.6128 
-2.5259 

For completeness, the f irs t perturbation of the velocity and temper­
ature distributions (fJ and 9;) obtained are presented (Figs. 2 and 3, r e s ­
pectively) as functions of T) for various values of Prandtl number. Both 
the minimum and the maximum values of the f irs t perturbations of the di­
mensionless velocity and tempera ture distributions occur at la rger values 
of the argument T) as the Prandtl number decreases . The 9^ function is 
related to the temperature distribution by Eq. (9), whereas the i[ function 
is related to the velocity component u by Eqs. (26) and (10). 

The ratio of the local Nusselt number for a cylinder to that for a 
flat plate is shown in Fig. 4. Three trends evident from Fig. 4 a re : 
(l) that, for a fixed Prandtl number, the Nusselt number for a cylinder 
deviates more and more from the Nusselt number for a flat plate as ^ in­
c r e a s e s ; (2) that, at a fixed value of the x -paramete r ( | ) , there are greater 
deviations of Nux.cyl from Nux.fp as the Prandtl number decreases ; and 





I ' I ' I 

1_J \ I L_ 

0 . 8 

0 .6 

0.14 

0 . 2 

0 

-\< 

1 1 

•^0.03 

• -0 . I 

T--»l 

1 ' 
^ f r 

1 1 

1 ' 1 ' 
= O.CI 

- 0 . 02 

Y^V^^ira-

1 ' 

— 
-

-

-
-

10 16 20 26 30 36 HO 

Fig. 2. Variation of the F i r s t Perturbation of the Dimensionless Velocity Distribution i\{r]) 





I I I I , I I I I I I I 

1.0 

o.e 

o.e 

o.u 

0 . 2 

0 

- • " 

1 L ^ 

•^0.03 N 

\ > - c . i 

> ^ 1 

' 1 ' 

\ .^^' 

-^0 .02 \ 

1 1 : 

1 ' 1 
= 0.01 

1 

— 

-

-

-
\ — 

^ \ -

to 15 20 25 30 35 MC 

0 1 2 3 U 5 6 7 

Fig. 3. Variation of the F i r s t Perturbation of the Dimensionless Tennperature Distribution 0I(T)) 





(3) that the perturbation method of solution of the boundary -layer equations 
becomes useless for Pr < 0.1 because 
of slow convergence of the power-
ser ies expansion of both the dimen­
sionless s t ream function f ( | ,T)) and 
temperature 9(^,7)). Since the x-
parameter(4) is proportional to the 
ratio of the boundary-layer thickness 
to the radius of the cylinder, the 
Nusselt numbers for a cylinder are 
close to those for a flat plate, and 
as the thickness of the boundary 
layer increases the Nux cyl deviates 
more and more from Nux^fp. 

The ratio of the local shear 
s t ress for the cylinder to that for a 
flat plate is shown in Fig. 5 for 
Pr = 100 and 0.01. There are two 
aspects of these results which should 
be noted: first, that Tcyl/rfp varies 
only slightly with Prandtl number 
over the very wide range considered 
here; and secondly, as in the case of 
heat transfer resul ts , again there is 
the slow convergence of the ser ies 
for Pr = 0.01. 
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ĉ  
-

• ^ 

Fig. 4 

Comparison of Local Nusselt 
Number between Cylinder and 
Flat Plate 

The Nusselt numbers predicted 
by the perturbation method of Sparrow 
and Gregg and those by the integral 

method of Hama et al., are shown graphically in Fig. 6 as a function of the 
distance parameter ^ for a range of Prandtl numbers (from 100 to 0.01). 
The radius of convergence at the power ser ies in § is not known, but it is 
expected to be smaller than one, and therefore Nusselt numbers have not 
been presented for | > 1. On the other hand, the integral method of solu­
tion is expected to be applicable when the boundary layer is thick, i.e., i 
is large, and therefore Nu are not shown for i < 0.5. It is seen, however, 
that the gap between the two results is smallest for Pr ~ 1.0. For all 
Prandtl numbers studied the integral method predicted larger values of Nu 
than the perturbation method did for small ^ values ( | < 0.01). This is 
expected because the assumed velocity, Eq. (19), and temperature , Eq. (20), 
profiles are in e r r o r for small values of 4- It is seen from Fig. 6 that, as 
Prandtl numbers decrease , the Nusselt numbers decrease and the variation 
of Nu with 4 becomes smal ler . 
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The local Nusselt numbers for air , P r = 0.72, predicted by various 
investigators for laminar natural-convection flow along a vertical flat plate 
and thin cylinder, are shown graphically in Fig. 7 as a function of 4- In 
the region near the leading edge (small | ) , the vert ical cylinder behaves 
much like the vert ical flat plate. However, as the distance from the lead­
ing edge increases , the Nusselt numbers for the vert ical cylinder deviate 
more and more from the Nusselt numbers for the flat plate. For air , the 
heat - t ransfer resul ts predicted by the boundary-layer analysis(l) are 
lower than those determined experimentally 

ary-
(2) 

SPAIil!OW AND GREGG 

( 2 ) RECOMHENOED 
(II) 

FOR 4 FLAT PLATE 

FOR A FLAT PLATE 

I I I I ' l l I I I I I I I 

Fig. 7. Comparison of the Nusselt Numbers for Prandtl 
Number of 0.72. 

IV. CONCLUSIONS 

An analysis was made of the axisymmetric free-convection laminar 
flow about a vert ical thin cylinder oriented in a direction parallel to that 
of the generating body force. The solutions of the boundary-layer equations 
were obtained by the perturbation and the integral methods. Because of 
the nature of the assumptions made in obtaining the solutions, both methods 
have a limited range of applicability, are only approximate, and are not 
expected to be very reliable for small Prandtl numbers. 
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The use of flat-plate Nusselt numbers for predicting heat t ransfer 
from a cylinder will always be conservative. The heat- t ransfer coefficients 
calculated will be more conservative for small Prandtl numbers than for 
large Prandtl numbers. 

For the problem considered here , the boundary layer can become 
relatively thick and certain assumptions of the theory will no longer be 
valid. The velocity and tempera ture profiles assumed are not quite accurate 
for small values of the x -pa rame te r i. In addition, the use of these pro­
files in the integral method of solution might not have been appropriate for 
the case of small Prandtl numbers . Hence, there remains a need for a 
more exact theory and an experiment to verify the analytical results p r e ­
sented in this repor t as well as to provide information on the limits of 
applicability of the boundary layer theory for free-convection flows with 
fluids of low Prandtl number. 
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APPENDIX A 

NUMERICAL SOLUTION OF THE PERTURBATION EQUATIONS 
[Eqs. (13) and (14)] 

Inspection of both equations designated Eq. (13), for example, 
reveals that fi and 9; appear in both equations, which necessi tates simul­
taneous solution. In addition, it should be noted that it is also necessary 
to utilize both solutions of Eq. (12) as input data, since fo, i'o, fo , fo . 9o. 
and do all appear in both equations of Eq. (13). In order to car ry out the 
integrations of both equations of Eq. (13), the values fj, fj, fj', 9;, and Sj 
a re required at T)= 0. From the listing of the boundary conditions, 
Eq. (13a), it is seen that only fj, fi, and Bi are given at r) = 0, whereas 
i[ and 9i a re given afn^oo. Thus, the computational problem is reduced 
to a search for the correc t values of i" (0) and 9[ (0) which would yield 
a solution of the equations satisfying the boundary condition at T) -• oo 
within the prescr ibed accuracy. 

A double-precision Adams-Moulton forward-integration method 
was chosen for the solution of the equations. The problem was programmed 
for an IBM-704 digital computer. To satisfy the boundary conditions at 
Tl ^ CO, a continuous i terative process developed by Hering(15) JQ obtain 
initial values of fo (0) and Sj (0) was used. Since the tablesC^.S) of the 
functions fo, fi, C 9o, and 9o were not adequate for the integrations of 
Eqs. (13) and (14), as the increments in the independent variable were too 
large, Eq. (12) was also solved. The solution thus obtained was utilized in 
Eqs. (13) and (14). The method of solution of Eq. (14) was identical with 
that of Eq. (13). 

For P r =£0.1, the functions i'o (ri), i" (r]). and f̂  {r,) had a tendency 
to oscillate at some point {r]> 0), and these oscillations grew and fed into 
other functions. The smaller the Prandt l number, the ear l ier in the inte­
gration process did the oscillations appear. This was partly due to the 
numerical integration method used. By decreasing the increment size 
this difficulty was overcome. However, for small Prandtl numbers the 
method of solution was extremely time consuming. 
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A P P E N D I X B 

R E D U C T I O N O F T H E I N T E G R A L EQUATIONS 
[ E q s . (17) and (18)] 

By s u b s t i t u t i n g y - ro (eO' - l ) and the v e l o c i t y , Eq . (19), and t e m ­
p e r a t u r e , E q . (20), d i s t r i b u t i o n s in t he i n t e g r a l E q s . ( I7) and (18), t h e r e 
r e s u l t s 

rli K2 A r ° [ U ^ - 2 U ( e ^ ' - l ) + ( e ' ' ' - l ) ^ ] (a ' 
dx I 

J 0 

) 2 e ^ " d a ' 

rSg/3|Tv e^° d a ' - 1 KU (37) 

a n d 

^ o K ^ (U + l ) a ' - a'e° - (U + l) 
(a')2 (a ' )2e° 

d a ' 
roO, (38) 

r e s p e c t i v e l y . P e r f o r m i n g the i n d i c a t e d i n t e g r a t i o n s , d i f f e ren t i a t ing 
E q s . (37) and (38) e x p l i c i t l y , and r e a r r a n g i n g t e r m s , one ob ta ins 

dU , ^ da 
dx dx 

(39) 

a n d 

A i H + B 4 ^ = C 
dx dx 

(40) 

w h e r e 

°(f - °) - I f̂J + U + l a^ - a + Z) 2 5 4 J 

b = [ a V - 2(U + l )ae^° + (U + l)^a2e20] 2 a 

r — r r f f e ^ o ^ - l ) - 2 a ( u + l ) 
^ " gp |Tw-Ta | r^ LV / V / 

A = [ a + 1 + ( a + l)e^°]a 

(41) 

(42) 

(43) 

(44) 





-y ; | . „ ) . i ] . . a , 2 ( u , l ) ( a > - , , i ) , ' ° - ( u * l ) * ^ 

m Zv' 

gPlTw - TaIrS 

(45) 

(46) 

Introducing the x -paramete r (|) as the independent variable, 
Eqs. (39) and (40) can be rewrit ten as 

dU , , da _ , (47) 

and 

dU da „ (48) 

where 

[e^*^- l -2a (U + 1)] (49) 

and 

-ya,) (50) 
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